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The problem of the uniform heating of a two-layer plate is solved. The transversely isotropic layer considered (a soft plate) is 
in ideal contact with a rigid isotropic thin elastically deformed layer. The ends of the plate are load-free. A boundary layer of 
the soft plate (a thin contact layer) is introduced, which enables the boundary conditions on the ends of the plate to be formulated 
in such a way that the problem has a bounded smooth solution [l]. The hvo-layer plate, generally speaking, is bounded along 
the axis perpendicular to the axes directed along the length and thickness of the plate. The resultant force and the resultant 
moment, applied to the end transverse sections, are equal to zero. The exact solution of the temperature problem is sought using 
the equations of the theory of elasticity. The plane problem of the bending of a two-layer plate acted upon by a uniformly distributed 
pressure applied to the side surface of an anisotropic layer is solved by a similar method. The ends of the rigid isotropic layer 
are clamped. 0 2003 Elsevier Ltd. All rights reserved. 

The temperature problem considered, generally speaking, is not a plane or generalized-plane problem, 
unlike the asymmetrical mixed temperature problem for a transversely isotropic elastic layer, investigated 
previously in [ 11, for which a method was proposed for constructing an exact solution in ordinary Fourier 
series in one coordinate. 

1. HEATING OF A TWO-LAYER PLATE. METHOD OF SOLUTION 

The problem of the uniform heating of a two-layer plate is solved. The plate is regarded as a transversely 
isotropic soft layer, which is in ideal contact with a rigid isotropic thin elastically deformed layer. Using 
the equations of the theory of elasticity, the stress-strain state of the soft layer of length 2L and thickness 
H, occupying a region 

Ix’l<L, Oly’lH 

and the stress-strain state of the rigid layer of thickness Hiv, occupying the region 

/x’lIL, HIy’SH+H, 

is determined. 
The two-layer plate, generally speaking, is bounded along the .z axis, perpendicular to the axes directed 

along the length and thickness of the plate. The length Z,, of the plate along the z axis is such that 
L G z(j. 

We will henceforth use dimensionless Cartesian coordinates X, y, referred to L. Then y = 0 is the 
free side surface of the soft layer being investigated, x = f 1 are the ends of the plate, y = h is the surface 
of contact with the rigid layer (h = H/L), and y = h + hN is the free side surface of the rigid layer 
(hN = H/jr/L). 

The stresses, strains and displacements of the rigid layer will henceforth be denoted by the superscript 
(W 

For the deformation of the plate along the z axis we have 

5 = (C,+C,y)IE,, Olylh+h, (1.1) 

where E,r is the modulus of elasticity of the soft layer along the x axis, and C, and Cz are unknown 
constants. 
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We will assume that E,, E,,, E,, ~12 are non-zero components of the strains in the two-layer plate, which 
depend on x and y. In this case, the following conditions in the displacements 

W azua = azu, , ~1 = z, x, y, axuz = axuy) 

are automatically satisfied on the contact surface of the layers y = h. 
We will write the relation between the stresses and strains of the soft layer, taking into account relation 

(1.1): 

Eoe, = 6, - vy(Ty + E,cq( 1 + v) - (C, + C,y)v( 1 - v2)-’ 

E()&, = OQy - vo<T, + E,( ay + kv’a,) T - (C, + C,y)kv’( 1 - v2)-l 

EOEXY = YOGxyv (T, = vex + kv’o, - E,a,T + C, + C,y (1.2) 

o _ k-(kvt)2 E 

l-v2 ’ 
VO +, yo=- yd, E. E 

1 -v2’ 
=X 

l-v2 

Here we have assumed that the isotropy axis of the material is directed along they axis, E, and Ey 
are the moduli of elasticity along the x and y axes, and G is the shear modulus in the (x, y) plane. The 
coefficient v characterizes the transverse compression in the isotropy plane (x, z) for stretching in this 
plane, and v’ represents the transverse compression for stretching in the direction of they axis [2]. The 
quantities & and ay are coefficients of thermal expansion along thex andy axes and T is the temperature 
increment (T = const). 

The relation between the stresses and strains of the rigid layer, taking relation (1.1) into account, 
has the form 

E(bvy = ($J’ _ p,(y) + EY’ctT( 1 + p> - a(C, + C,y)P( 1 - p2)-l 

EV’)EW) = #‘) 
0 Y y -Poe' + Ey'olT( 1 + p> - a(C, + C,y)P( 1 - p2)-' 

Er’( I- P)E;) = 20;;‘, CT?) = P(ay’ + 0:)) - EcN)aT + a(c, + c,~) 

ELN) = EcN’( 1 - p2)-i, PO = p( I - p)-i, a = E’N’/E, 

(1.3) 

where EcN) is Young’s modulus, p is Poisson’s ratio and a is the coefficient of thermal expansion. 
The equations of anisotropic elasticity, taking relations (1.1) and (1.2) into account, can be written 

in the form 

~a~x,,F + katxyyF + azyyyF = 0 
0, = a;,F, CT, = a;,F, <Txy = -a;yF; p = yo-2v, (1.4) 

Correspondingly, the equations of the isotropic theory of elasticity for the rigid layer can be reduced 
to a biharmonic equation for the potential F (relation (1.4) with KI = 1 and p = 2). 

We will write the boundary conditions on the side surface y = 0 of the soft layer as 

y = 0: oy = qy = 0 (1.5) 

The conditions on the contact surface y = h have the form 

(l-6) 

y = h: E, = ECN), x a,w = a,~(“) \ (1.7) 

where W is the dimensionless displacement (with respect to L) along they axis. 
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We will write the boundary conditions on the side surface y = h + hN of the rigid layer as 

Y = h+h,: 0:) = .$ = 0 (1.8) 

There are no loads on the ends of the two-layer plate: 

x = fl, OSy<h: 6, = cTxv = 0 (1.9) 

x = fl, hIy<h+h,xy’ = 0:) = 0 (1.10) 

Since the plate, generally speaking, is bounded along the z axis, we have, by the symmetry of the 
problem (s = h + hN) 

~jo,dydx + jjo:Nidydx = 0 
00 Oh 

(1.11) 

Oh 

(1.12) 

Relation (1.11) is the condition for the resultant force in the section z = const to be zero, while (1.12) 
is the condition for the resultant bending moment in this section to be zero. 

The solution of problem (l.l)-(1.12), presumably, has a singularity at the points (X = +- 1, y = h) of 
the composite plate. We will obtain the finite smooth stress-strain state of the composite plate, which 
is identical with the solution of system (l.l)-(1.12) everywhere with the exception of a certain small 
neighbourhood of these points. 

The problem can be formulated as follows. 
We conventionally divide the soft layer into strips S,* 

{Y,-, ~Y~Y,l, n = 1,2, . . . . N- 1; yo=o, Y,-, =h 

where N-l is the total number nf strips. The strip SN: {h s y d h f hN) of the rigid layer is of thickness 
hN. 

The plate SN-i is a thin contact layer of small thickness 6,-t 6 h, specified a priori. In this layer it is 
required to obtain an exact solution of Eq. (1.4), corresponding to the internal mixed temperature 
problem, i.e. this solution need only satisfy the boundary conditions on the side surfacesy = h - &-, 
and y = h. This layer will be called the boundary layer [l]. 

In the other layers of the soft layer it is required to satisfy the necessary boundary conditions on the 
surfaces y = ynml, y = y, (n = 1, 2, . . . , N - 2) and the integral boundary conditions on the ends 
x = 21, which correspond to the free boundary. Generally speaking, these layers can have different 
thicknesses 8, = yn -Y,+~. The rigid layer and the boundary layer form a two-layer plate, on the ends 
of which integral conditions are specified of the free-boundary type. 

The exact solution of the problem for the soft layer has the form (0 4 y < h, II = 1,2, . . . , N - 1) 
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(+fl) 
Y 

= @‘Q’“’ + N’“‘Q’“’ + ~‘“‘52 + N’“) 
196 6 2,6 4n 4 (1.13) 

+Csin(nmx)i [R~!I,mch(ai,mSn)+R::!~sh(cxi,,S,)l’, 
i= I 

where 

&o 
a = o;ix, Y), a = n, y, qJ 

%, m = nmq, 5, = Y-Yn-l* Y, = 0, YN-1 = h, O~C,~S, 

2G, 2 = pf(j.L*-4cLq1'2, Ki>O, i = 1,2 

For a material with a pronounced anisotropy we can assume that p > 26 [2]. 
Here and everywhere henceforth, if the limits of summation are not indicated, the summation is carried 

outfromm = 1 tom = 00. 
The exact solution of the temperature problem for the rigid layer has the form 

(W (NJ + N2i P2,2i) + D5 PI,, 
(NJ (NJ + D:“‘s, + My’+ 

i=2 

irl 

f 1.m = sh(nm&), f2,,, = ch(7c&), f3,nz = [2(%,)-‘fl,, + &v~z,~]& 

f 4,m = [WJ’f2,, + 5Nf~,mllh~ 

pllj,(x,y) = 6x25;-25;, P:fJs) = x4- 1-s;: 

p(N) 
L5 = 3xyN-25;, PI;; = x2- l-25& Pyq = -\; 

#') 
Y 

= Md”‘Q;fk’ +N~)Q:r;l+M~N'~;+N~N) +D~)$D(lN)~N+N~)- 

(1.14) 
i=l 

%,m = f,,,,,, (P2.m = fz,,,v (P3,m = hvf2,mhv~ 949, = bf,,m%v 

Q;flh)(~,~) = $(x4-;), Qy, = 6x25:-2(X4-;) 
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JN) = 
XY 

- 4$)x5; - 4Nr)x3kN - 2My’x5, - 3 D:“‘& + D(,N)x + 

where 

% = xm, cN = y-h, O<kNshN 

&N) 
a = olfJ’(x, y), a = x, y, xy 

In formulae (1.1) (1.3) and (1.14) Rjyi (j = 1, 2, 3, 4) M!$) (j = 1, 2, 3), N’;1’ (j = 2, 3) 
D?) (i = 1,3,5) and N iw, C, and C7 are constants to be determined during the course of the 

‘The conditions for the layers in the soft layer to be matched can be written in the form [l-l 
solution. 

(n) 
Y = Y”-l:cJx x = (pu 9 $) y = &+l) 

Y 
(IX) 

x x 

Y = yn- ,: 0;’ = CT:- ‘), ja,c$‘dx = p,ay - “dx (1.16) 
0 0 

n=2,3 ,..., N-l. 

The first equation of (1.15) follows from the continuity of the deformation zzx along y. The second 
equality of (1.6) denotes that the quantity &W is continuous along the y coordinate. 

The conditions for the soft layer and the rigid layer to be matched can be written in the form 

y = h: E,,E~-~) 1 W (N) b(N- 1) = &‘J) 
= GE0 Ex ’ y Y 

x 

y = h: CT;-‘) = OK’, Ja,o~-“dx-[~+v,-(a,)-‘(2+Po)]~~-” = 
0 

= (a,)-‘jayoj”‘dx + (v - p)( 1 - v2)-’ c,x 
0 

(1.17) 

*()(1-I?) = a(l-v2) (1.18) 

The second equality of (1.18) denotes that the quantity &W is continuous along they coordinate on 
the surface y = h. 

We will rewrite condition (1 S) on the free surface y = 0 of the soft layer 

Y = 0: By = 0;; = 0 

and on the free surface y = h + hN of the rigid layer 

(1.19) 

Y = h+h,:ol’j’ = a:;) = 0 (1.20) 
We will write the integral boundary conditions on the endsx = t 1 of the soft layer, taking into account 

the symmetry of the stresses with respect to x 

JaZ”‘(1, y)dy = jaj”‘(l, Y>C,dY = ~c$kl, YWY = 0 

n = 1,2, . . . . N-2 
(1.21) 
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The upper and lower limits of integration are JJ,~ and yn-l respectively. 
It follows from expressions (1.13) that the third condition of (1.21) is automatically satisfied. 
The integral conditions on the ends x = k 1 of the rigid layer and the boundary layer have the form 

(1.22) 
0 0 

oy’ds,~, = 0 

0 0 

The third condition of (1.22) is automatically satisfied. 
We will write the boundary conditions in the transverse end sections z = const of the two-layer plate 

N 1 Yn 
oyfydx = 0 

n= lOY,-, 

N 1 Yn 
(1.23) 

cll ol”‘(y -h)dydx = 0 
n=lOY,-, 

For the boundary layer we will assume in (1.13) that 

(N-1) 
M6 = g-1) 0 

6 = 

We will also require that the following condition is satisfied 

(1.24) 

M(N) + 2NtN) = 0 6 6 (1.25) 

The last condition denotes that the second condition of (1.7) is satisfied exactly for any finite number 
L, where L is the number at which the sums of the Fourier series in formulae (1.13) and (1.14) cut off. 

The constants written above are found from Eqs (1.15)-(1.25). Condition (1.25) enables the stability 
of the process of calculating the required constants to be increased considerably. 

The existence of particular solutions in the polynomials of Eq. (1.3) enables the convergence of the 
Fourier series in expressions (1.13) and (1.14) to be improved. 

We will briefly indicate the method of setting up the system of algebraic equations for determining 
the required constants [l]. 

We will use the following expansions of the functions in Fourier series 

2x2 - x4 = ~+48~~cos(7cmx), x3-x = 12Cqsin(rrrrrx) 
(xm) (nm) 

(1.26) 

The functional equations (1.15) and (1.17), the first equation of (1.19) and the first equation of (1.20) 
are eyanded in basis ftmctionsx2, 1 and cos(nrmc). This indicates that in these equations, the polynomial 
2n2 -n in Eq. (1.26) is expanded in a Fourier series. The algebraic expressions with the factors cos(7cmx) 
and x2, and also the sum of all the constants (the factor of unity) of this functional equation are then 
equated to zero. 

The functional equations (1.16) and (1.18), the second equation of (1.19) and the second equation 
of (1.20) are expanded in basis functionsx and sin(nmx). The expansion of the functionx3-x in a Fourier 
series is used here. 

Equations (1.24), (1.25), (1.23) and the first two equations from (1.21) and (1.22) close the 
system of algebraic equations obtained for determining the required constants in solution (1.13), (1.14) 
and (1.1). 
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Since the deformation Ed is a linear function of the y coordinate, this temperature problem is not 
formally plane or generalized plane. 

Results. Calculations of the dimensionless stresses (referred to the quantity &xJ), presented in this 
section, were carried out for k = 3, y = 6, v = 0.2, v’ = 0.1, h = 0.2, hN = 0.02, a = 104, CI = O.Sa,, 
p = 0.4, N = 6, S,-, = 0.2h, Z1 = 0.76, Zj = 6 (i = 2, 3,4), 6 = 0.8hl(N - 2.3) and L = 80, where L is 
the number at which the Fourier series with respect to the coordinate x are cut off. The thickness 6, 
of the first layer was taken to be less than the thicknesses of the other layers, in order to improve the 
approximation of the condition 6,(l,y) = 0 in the region of the free side surfacey = 0 of the soft layer. 

In Fig. 1 we show the distribution of the dimensionless stresses px (the continuous curve), p? (the 
dash-dot curve) and pm (the dashed curve) with respect to x in different sections of the soft 
layer investigated 0 s y’ G h. Curves 1, 2, 3 and 4 correspond to the sections y = 0, y = 0.584h, 
y = h - S,,-, = 0.8h andy = h. 

Below we present the results of a calculation of the stresses pLN) on the surfaces y = h and y = s, 
s=h+h, 

x 0 0.4 0.6 0.8 1 

py c-r, h) 144 132 112 69.2 6.5 

(N) 
px (x. s) -134 -124 -104 -63.6 -4.9 

A comparison of the results of the calculation of the stresses with subscripts (n) and (n - 1) on the 
matching surfaces of these solutionsy = ynml (n = 2,3,4,5) confirms the high degree of convergence 
of the Fourier series in solution (1.13) and (1.14). The calculations also show that the solutions are 
practically identical when N 2 5. 

0. 

I I 
0.5 X 1.0 

Fig. 1 

P, 
py - . - . - 

pw---- 

0.5 x 1 .o 

Fig. 2 
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2. BENDING OF A TWO-LAYER PLATE 

The problem of the bending of a two-layer plate was also solved. A transversely isotropic elastic soft 
layer is in ideal contact with a rigid isotropic thin layer. The endsx = -t- 1 of the rigid layer are clamped, 
and the end of the soft layer are load-free. A uniformly distributed load 

0,(x, 0) = -4, q = const. 

acts on the free side surfacey = 0 of the soft layer. 
We will use the solution written in Section 1. We have 

c, = c, = 0, T = 0, E, = 0 (OSySh+h,) (2.1) 

The stresses in the rigid layer are given by formulae (1.14). The stresses in the soft layer are given 
by relations (1.13). One must add the term (-q) in formula (1.13) to calculate cr,, . 

For the boundary layer S,+i we have condition (1.24) 

(N-1) 
43 

= $N-‘1 = 0 
6 

It is also necessary to satisfy condition (1.25). 
Note that the boundary conditions are not specified directly on the ends of the boundary layer. 
Instead of the first condition (1.19) on the side surface y = 0 we have 

Y = 0: 0;” = -q 

Instead of the integral conditions (1.22) on the ends x = +l of the rigid layer we will write the 
conditions for the end of the rigid plate to be clamped on taking into account the symmetry of the solution 
of the problem with respect to x 

1 

x = 1, y = O.Jh, + h: uy = 0, Qp = 0; UP’ = fi?)dX 
0 

Conditions (1.23) do not arise. The remaining relations for determining the required constants 
(1.15)-(1.18), (1.20) and (1.21) and the second condition of (1.19) remain without change. 

Calculations of the dimensionless stresses (with respect to the quantity q) were carried out for 
N = 6, &,,-i = O.%, & = 6 (i = 1, 2, 3,4), S = O.@zl(N - 2) and L = 80. The values of the mechanical 
constants of the two-layer plate and its geometrical parameters h and hN are presented in the concluding 
part of Section 1. 

In Fig. 2 we show the distribution of the dimensionless stresses px (the continuous curve), pY (the 
dash-dot curve) andp, (the dashed curve) with respect tox in different sections of the soft anisotropic 
layer investigated 0 G y d h. Curves 1, 2, 3 and 4 correspond to the sections y = 0, y = 0.4h, 
y = h - SNm, = 0.8h,y = h. 

REFERENCES 

1. PANFEROV, I. V., The asymmetrical mixed temperature problem for a transversely isotropic elastic layer. Prikl. Mat. Mekh., 
2001,65,6, 1059-1064. 

2. LEKHNITSIUI, S. G. The Theory of Elasticity of an Anisotropic Body. Nauka, Moscow, 1977. 

Translated by R.C.G. 


